

A primal-dual Dikin affine scaling method for symmetric conic optimization

Ali Mohammad-Nezhad Tamás Terlaky

Department of Industrial and Systems Engineering Lehigh University

July 15, 2015

Outline

Dikin affine scaling

Primal-dual Dikin affine scaling

Extension to symmetric cones

Numerical results

Outline

Dikin affine scaling

Primal-dual Dikin affine scaling

Extension to symmetric cones

Numerical results

Semidefinite optimization

- ▶ The first idea of IPMs goes back to the work of Frisch (1955).
 - ▶ IPMs for nonlinear optimization by Fiacco and McCormic in 1960s.
 - Affine scaling direction introduced by Dikin in 1960s.
- ▶ Karmarkar (1984) revived the interest in IPMs.
- ▶ Primal-dual affine scaling methods were proposed in 1990s.
 - ▶ Monteiro, Adler, and Resende (1990).
 - ▶ Jansen, Roos, and Terlaky (1996).

Ilya I. Dikin (1936 - 2008)

Primal affine scaling method

- Originally a primal method for linear optimization (LO).
- ▶ At each step minimizes the objective over an ellipsoid.
- ▶ The idea is to replace the nonnegativity constraint $x \ge 0$ by

$$(x - \bar{x})^T \operatorname{diag}(\bar{x})^{-2} (x - \bar{x}) \le 1,$$

where \bar{x} denotes an interior feasible solution.

- ▶ Dikin proved that under nondegeneracy assumption, this method converges.
- The polynomial complexity of the method has still not been proved.

A primal-dual Dikin affine scaling method for SCO (6 of 33)

Outline

Dikin affine scaling

Primal-dual Dikin affine scaling

Extension to symmetric cones

Numerical results

A primal-dual Dikin affine scaling method for SCO (7 of 33)

Illustration of the primal-dual Dikin method

- ▶ Jansen, Roos and Terlaky (1996); A primal-dual Dikin affine scaling method.
- The method has a worst-case iteration complexity $\mathcal{O}(nL)$.

Primal-dual Dikin affine scaling method

• At each step, the search directions $(\Delta x, \Delta s)$ are derived by solving

$$\begin{array}{ll} \min & x^T \Delta s + s^T \Delta x \\ \text{s.t.} & A \Delta x & = 0, \\ & A^T \Delta y + \Delta s & = 0, \\ & \|x^{-1} \Delta x + s^{-1} \Delta s\| & \leq 1, \end{array}$$

where $x^{-1}\Delta x$ and $s^{-1}\Delta s$ are coordinate-wise products.

Let
$$v = \sqrt{xs}$$
, $d = \sqrt{\frac{x}{s}}$, $d_x = d^{-1}\Delta x$, $d_s = d\Delta s$, and $d_y = \Delta y$.

▶ The scaled subproblem in the *v*-space is represented by

$$\begin{array}{ll} \min & v^T(d_x + d_s) \\ \text{s.t.} & \bar{A}d_x & = 0, \\ & \bar{A}^Td_y + d_s & = 0, \\ & \|v^{-1}(d_x + d_s)\| & \leq 1, \end{array}$$

where $\bar{A} = A \text{Diag}(d)$.

Extension to semidefinite optimization (SDO)

- ▶ De Klerk, Roos, and Terlaky (1998) generalized the method to SDO.
- The search directions (D_X, D_S) are derived by solving

$$\begin{array}{ll} \min & \operatorname{trace}(V(D_X + D_S)) \\ \text{s.t.} & \operatorname{trace}(\bar{A}_i D_X) & = 0, \quad i = 1, \dots, m \\ & \sum_{i=1}^m \bar{A}_i (d_y)_i + D_S & = 0, \\ & \|V^{-\frac{1}{2}}(D_X + D_S)V^{-\frac{1}{2}}\| & \leq 1, \end{array}$$

where V is the NT scaling matrix.

 D_X and D_S are defined in a similar way as in LO.

Outline

Dikin affine scaling

Primal-dual Dikin affine scaling

Extension to symmetric cones

Numerical results

A primal-dual Dikin affine scaling method for SCO (11 of 33)

Extension to symmetric conic optimization (SCO)

- ▶ Goal: To extend the primal-dual Dikin method to SCO.
- Symmetric cone generalizes \mathbb{R}^n_+ , \mathcal{L}^n , and \mathbb{S}^n_+ .
- ▶ Euclidean Jordan Algebra (EJA) is a major tool for the analysis of SCO.
- ▶ EJA provides a unified framework for IPMs over all symmetric cones.

Symmetric cone

Let \mathcal{J} be a vector space over the field of real numbers;

 $\mathcal{K} \subset \mathcal{J}$ be a closed pointed convex cone;

 \mathcal{K}_+ be the interior of \mathcal{K} .

 $\langle x,s \rangle$ is the inner product of $x,s \in \mathcal{J}$. The *dual* cone of \mathcal{K} is

$$\mathcal{K}^* = \{ s : \langle x, s \rangle \ge 0, \text{ for all } x \in \mathcal{K} \},\$$

- \mathcal{K} is self-dual if $\mathcal{K} = \mathcal{K}^*$.
- K is referred to as a homogeneous cone if: an invertible map A exists so that A(x) = s and A(K) = K for all x, s ∈ K₊.
- \blacktriangleright *K* is *symmetric* if it is both self-dual and homogeneous.
- Special cases: \mathbb{R}^n_+ , \mathcal{L}^n , and \mathbb{S}^n_+

Standard form of SCO

$$(P) \quad \min\{\langle c, x \rangle : Ax = b, x \in \mathcal{K}\}, \\ (D) \quad \max\{b^T y : A^* y + s = c, s \in \mathcal{K}, y \in \mathbb{R}^m\}.$$

 \blacktriangleright *K* is a symmetric cone.

▶
$$b \in \mathbb{R}^m$$
, and $c, a_i \in \mathcal{J}$ for $i = 1, ..., m$.
▶ $Ax = \begin{pmatrix} \langle a_1, x \rangle \\ \vdots \\ \langle a_m, x \rangle \end{pmatrix}$; A is assumed to be full row rank

▶ Interior point condition holds.

Optimality conditions and Jordan product

Optimality conditions

- ▶ Primal and dual feasibility: Ax = b, $A^*y + s = c$, $x, s \in \mathcal{K}$
- Optimality: $b^T y = \langle c, x \rangle \iff \langle x, s \rangle = 0.$

Jordan product

- Optimal iff $x \circ s = 0$.
 - $x \circ s = 0$ is the complementarity condition.
 - $x \circ s = L(x)s$ is a bilinear map, where L(x) is a symmetric matrix.
 - ▶ Properties: L(x)e = x, $L(x)x^{-1} = e$, and $L(x)x = x^2$.
 - Quadratic representation of x: $P(x) = 2L^2(x) L(x^2)$.
 - (\mathcal{J}, \circ) is a commutative algebra with rank r and dimension n.

Second-order cone

Example

▶ The second-order cone is represented as

$$\mathcal{L}^{n} = \{ x \in \mathbf{R}^{n} : x_{0} \ge \|x_{1:n-1}\| \}.$$

•
$$e_{n \times 1} = [1, 0, ..., 0]^T$$

• $L(x) := \begin{bmatrix} x_0 & x_{1:n-1}^T \\ x_{1:n-1} & x_0 I_{n-1} \end{bmatrix}$
• $x \circ s = \begin{bmatrix} x^T s \\ x_0 s_{1:n-1} + s_0 x_{1:n-1} \end{bmatrix}$.

Scaled primal-dual problem

• The NT scaling point of x and s is defined as

$$w = P(s^{-\frac{1}{2}})(P(s^{\frac{1}{2}})x)^{\frac{1}{2}}.$$

▶ For $x, s \in \mathcal{K}_+$, there exists a unique $w \succ_{\mathcal{K}} 0$ so that

$$v = P(w)^{-\frac{1}{2}}x = P(w)^{\frac{1}{2}}s.$$

▶ The scaled primal-dual system is given by

$$\bar{A}d_x = 0,$$
$$\bar{A}^*d_y + d_s = 0,$$

where

$$d_x = P(w)^{-\frac{1}{2}} \Delta x, \quad d_s = P(w)^{\frac{1}{2}} \Delta s, \quad d_y = \Delta y, \quad \bar{A} = AP(w)^{\frac{1}{2}}.$$

▶ The complementary gap is

$$\langle x,s\rangle = \langle P(w)^{\textstyle\frac{1}{2}}v, P(w)^{-\textstyle\frac{1}{2}}v\rangle = \langle v,v\rangle.$$

Extension of Dikin search directions

▶ The generalization of the Dikin ellipsoid is written as

$$\|P(w)^{\frac{1}{2}}x^{-1} \circ P(w)^{-\frac{1}{2}}\Delta x + P(w)^{-\frac{1}{2}}s^{-1} \circ P(w)^{\frac{1}{2}}\Delta s\|_{F} \le 1,$$

which is equivalent to

$$\|v^{-1} \circ (d_x + d_s)\|_F \le 1.$$

The Dikin search directions are derived by solving

$$\begin{array}{ll} \min \ \operatorname{trace}(v \circ (d_x + d_s)) \\ \text{s.t.} & \bar{A}d_x &= 0, \\ & \bar{A}^*d_y + d_s &= 0, \\ & \|v^{-1} \circ (d_x + d_s)\|_F &\leq 1. \end{array}$$

Proximity to the central path and feasibility

- ▶ The Dikin method keeps the iterates close to the central path.
- ▶ The measure of proximity is defined as

$$\kappa(v^2) = \frac{\lambda_{\max}(v^2)}{\lambda_{\min}(v^2)},$$

where $\lambda_{\min}(v^2)$ and $\lambda_{\max}(v^2)$ are the min and max eigenvalues of v^2 .

• Note:
$$\kappa(v^2) \ge 1$$
, with equality iff $v^2 = \mu e$.

The primal-dual Dikin method

Input

An interior feasible feasible solution (x^0, y^0, s^0)

Parameters

Proximity measure $\tau > 1$ so that $\kappa(x^0 \circ s^0) \leq \tau$ Steplength α with default value $\frac{1}{\tau \cdot \langle \tau \rangle}$

Accuracy parameter ϵ

 $x:=x^0,\ s:=s^0$

Repeat

Obtain $(\Delta x, \Delta s)$ by solving (*) Set $x := x + \alpha \Delta x$ Set $s := s + \alpha \Delta s$

Until trace $(x \circ s) \leq \epsilon$

Iteration complexity of the Dikin method

Theorem

Let $\epsilon > 0$, $\alpha = \frac{1}{\tau \sqrt{\tau}}$ and $\tau > 1$ so that $\kappa(x^0 \circ s^0) \leq \tau$.

The method terminates after at most $\lceil \tau r \log \frac{\operatorname{trace}(x^0 \circ s^0)}{\epsilon} \rceil$ iterations.

It yields a feasible solution (x,s) such that $\kappa(v^2) \leq \tau$ and $\operatorname{trace}(x \circ s) \leq \epsilon$.

Outline

Dikin affine scaling

Primal-dual Dikin affine scaling

Extension to symmetric cones

Numerical results

A primal-dual Dikin affine scaling method for SCO (22 of 33)

Numerical results

- ▶ We compare the Dikin affine scaling method and SeDuMi solver.
- ▶ 13 second-order conic problems from Dimacs library.
- ▶ SeDuMi was modified to implement the Dikin affine scaling method.
- ▶ Centering steps are introduced as safeguard.

Numerical results

	Dikin-type affine scaling				SeDuMi		
Instance	CPU/Iter	Obj	relinf	Cent	CPU/Iter	Obj	relinf
nql30n	3.6/34	-0.94602	4.1E-08	0	0.9/15	-0.94602	1.3E-08
nql30o	7.2/42	0.94603	5.2E-08	1	3.4/19	0.94603	4.0E-09
nql60n	12.7/34	-0.93505	8.2E-08	0	2.9/14	-0.93505	1.7E-08
nql60o	44.3/61	0.93513	7.6E-09	3	18.8/22	0.93516	1.7E-08
nql180n	447.7/86	-0.92772	3.0E-06	5	37/12	-0.92749	3.2E-06
nb	4.7/47	-0.05070	3.3E-09	1	1.5/20	-0.050703	4.7E-12
nb-L1	4.4/32	-13.01220	4.8E-05	0	2.1/18	-13.0122	1.0E-09
nb-L2	11.0/48	-1.62890	5.9E-05	4	3.0/16	-1.6289	1.8E-09
nb-L2-B	3.8/34	-0.10257	1.4E-12	0	1.6/16	-0.102569	2.7E-11
qssp30n	11.8/79	-6.49660	4.5E-08	12	1.3/20	-6.4966	1.5E-08
qssp30o	40.8/77	6.50280	7.0E-04	11	11.4/21	6.5182	0.0021
qssp60n	82.7/125	-6.56280	1.7E-06	30	7.7/27	-6.56269	1.2E-08
qssp60o	332.5/109	6.59330	1.2E-03	27	11.5/3	127.7891	0.0284

Conclusion

- Generalized the primal-dual Dikin affine scaling method for SCO.
- Established polynomial complexity of the method.
- ▶ EJA provides a powerful tool for the analysis of the method for SCO.
- ▶ The method is viable by the numerical results.

Thank you for your attention Any questions?

A primal-dual Dikin affine scaling method for SCO (26 of 33)

Euclidean Jordan algebra (EJA)

Definition

Let \mathcal{J} be a vector space over \mathbb{R}^n with bilinear map $(x, y) \to x \circ y$.

 (\mathcal{J}, \circ) is referred to as EJA if for all $x, y \in \mathcal{J}$

- 1. $x \circ y = y \circ x$,
- 2. $x \circ (x^2 \circ y) = x^2 \circ (x \circ y)$ where $x^2 = x \circ x$,
- 3. there exists an inner product so that $\langle x \circ y, s \rangle = \langle x, y \circ s \rangle$.

There exists a unique element e such that $x \circ e = e \circ x = x$ for all $x \in \mathcal{J}$.

- ▶ EJA is commutative over the field of real numbers.
- EJA is power associative; that is $x^{p+q} = x^p \circ x^q$.

Cone of squares

Definition

The cone of squares of (\mathcal{J}, \circ) is defined as

$$\mathcal{K}(\mathcal{J}) = \{ x^2 : x \in \mathcal{J} \},\$$

where $x^2 = x \circ x$.

• $\mathcal{K}(\mathcal{J})$ is a closed pointed convex cone with nonempty interior.

Theorem

A cone is symmetric iff it is the cone of squares of some EJA.

Rank and characteristic polynomial

Let r be the smallest integer so that $\{e, x, x^2, \cdots, x^r\}$ is linearly dependent.

- ▶ r is the degree of x denoted by deg(x) for $x \in \mathcal{J}$.
- ► The rank of \mathcal{J} is defined as $\operatorname{rk}(\mathcal{J}) = \max_{x \in \mathcal{J}} \{ \operatorname{deg}(x) \}.$
- x is regular if $\deg(x) = \operatorname{rk}(\mathcal{J})$.

Suppose that x is a regular element of \mathcal{J} .

• The characteristic polynomial of x is given by

$$\lambda^{r} - a_{1}(x)\lambda^{r-1} + \dots + (-1)^{r}a_{r}(x),$$

where $a_1(x), ..., a_r(x)$ are real numbers so that

$$x^{r} - a_{1}(x)x^{r-1} + \dots + (-1)^{r}a_{r}(x)e = 0.$$

Eigenvalues, trace and determinant

Definition

Let $\lambda_1, \ldots, \lambda_r$ be the roots of the characteristic polynomial.

 $\lambda_1, \ldots, \lambda_r$ are called the eigenvalues of $x \in \mathcal{J}$.

- trace $(x) = \lambda_1 + \dots + \lambda_r$.
- $\blacktriangleright \det(x) = \lambda_1 \lambda_2 ... \lambda_r.$
- $\blacktriangleright \langle x, y \rangle = \operatorname{trace}(x \circ y).$
- $||x||_F = \sqrt{\lambda_1^2 + \dots + \lambda_r^2}.$
- $||x||_2 = \max_i |\lambda_i|.$

Spectral decomposition

Definition

A Jordan frame is a set of elements $\{q_1, \cdots, q_k\}$ of \mathcal{J} so that

- q_i cannot be represented by the sum of two other elements.
- $q_i^2 = q_i$ for i = 1, ..., k.
- ▶ $q_i \circ q_j = 0$ for all $i \neq j$.
- $\qquad \qquad \bullet \ q_1 + \dots + q_k = e.$

Theorem

Let \mathcal{J} be an EJA with rank r.

Each $x \in \mathcal{J}$ can be uniquely represented as

$$x = \lambda_1 q_1 + \dots + \lambda_r q_r,$$

where the eigenvalues are real numbers.

Second-order cone

Example

Let $x \in \mathcal{L}^n$.

▶ It can be shown that

$$x^{2} - 2x_{0}x + (x_{0}^{2} - ||x_{1:n-1}||^{2})e = 0.$$

- ▶ r = 2 for this EJA.
- ▶ The spectral decomposition is given by

$$x = \lambda_1 q_1 + \lambda_2 q_2,$$

where

$$\begin{split} \lambda_1 &= x_0 - \|x_{1:n-1}\|, \quad \lambda_2 &= x_0 + \|x_{1:n-1}\|, \\ q_1 &= \frac{1}{2} \begin{pmatrix} 1 \\ -\frac{x_{1:n-1}}{\|x_{1:n-1}\|} \end{pmatrix}, \quad q_2 &= \frac{1}{2} \begin{pmatrix} 1 \\ \frac{x_{1:n-1}}{\|x_{1:n-1}\|} \end{pmatrix}. \end{split}$$

Spectral decomposition

▶ In particular:

$$x^{\frac{1}{2}} = \lambda_1^{\frac{1}{2}} q_1 + \dots + \lambda_k^{\frac{1}{2}} q_r,$$
$$x^{-1} = \lambda_1^{-1} q_1 + \dots + \lambda_k^{-1} q_r.$$

• x is invertible if
$$\lambda_1, \ldots, \lambda_r$$
 are nonzero.

• $x \in \mathcal{K}(\mathcal{K}_+)$ if $\lambda_1, \ldots, \lambda_r$ are nonnegative (positive).