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Semidefinite optimization

> The first idea of IPMs goes back to the work of Frisch (1955).
» IPMs for nonlinear optimization by Fiacco and McCormic in 1960s.
> Affine scaling direction introduced by Dikin in 1960s.

» Karmarkar (1984) revived the interest in IPMs.

» Primal-dual affine scaling methods were proposed in 1990s.

> Monteiro, Adler, and Resende (1990).

> Jansen, Roos, and Terlaky (1996).
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Ilya L. Dikin (1936 - 2008)
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Primal affine scaling method

> Originally a primal method for linear optimization (LO).

> At each step minimizes the objective over an ellipsoid.

> The idea is to replace the nonnegativity constraint > 0 by
(- )7 diag(z)"2(z —7) < 1,

where T denotes an interior feasible solution.

» Dikin proved that under nondegeneracy assumption, this method converges.
» The polynomial complexity of the method has still not been proved.
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Mlustration of the primal-dual Dikin method

» Jansen, Roos and Terlaky (1996); A primal-dual Dikin affine scaling method.

» The method has a worst-case iteration complexity O(nL).

9 / Central Path
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Primal-dual Dikin affine scaling method

> At each step, the search directions (Az, As) are derived by solving

min zTAs + sTAx

s.t. AAz =0,
AT Ay + As =0,
|z~ tAz +s71As|| <1,

where £~1Az and s—1As are coordinate-wise products.

Let v=+zs, d= \/g, de =d 1Az, ds = dAs, and dy = Ay.
» The scaled subproblem in the v-space is represented by

min T (dz + ds)

s.t. 5dm =0,
ATdy +ds =Y,
o=t (de +ds)ll <1,

where A = ADiag(d).
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Extension to semidefinite optimization (SDO)

» De Klerk, Roos, and Terlaky (1998) generalized the method to SDO.

> The search directions (Dx, Dg) are derived by solving

min trace(V(Dx + Ds))

s.t. trace(4;Dx) =0, :=1,...,m
mo
> Ai(dy)i + Ds =0,
i=1

-1 1
IV72(Dx +Ds)V™2|| <1,
where V' is the NT scaling matrix.

Dx and Dg are defined in a similar way as in LO.
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Extension to symmetric conic optimization (SCO)

v

Goal: To extend the primal-dual Dikin method to SCO.

> Symmetric cone generalizes R}, £, and S .

v

Euclidean Jordan Algebra (EJA) is a major tool for the analysis of SCO.

» EJA provides a unified framework for IPMs over all symmetric cones.
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Symmetric cone

Let J be a vector space over the field of real numbers;
K C J be a closed pointed convex cone;

K+ be the interior of K.

(z, s) is the inner product of z,s € J.

The dual cone of K is

K*={s:(z,s) >0, forallzeK},

v

K is self-dual if K = IC*.

v

K is referred to as a homogeneous cone if:

an invertible map A exists so that A(z) = s and A(K) = K for all z,s € K.

> K is symmetric if it is both self-dual and homogeneous.

v

Special cases: R, L™, and S}
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Standard form of SCO

(P) min{{c,z): Az =0b, z € K},
(D) max{bTy: A*y+s=c, s€K, y € R™}.

» K is a symmetric cone.

» be R™, and ¢,a; € J fori=1,...,m.

(alv :U)

Az = . ; A is assumed to be full row rank.

v

(am, )

» Interior point condition holds.
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Optimality conditions and Jordan product

Optimality conditions
» Primal and dual feasibility: Az =b, A*y+s=c¢c, z,s€K

» Optimality: b7y = (c,z) <= (x,s) =0.

Jordan product
» Optimal iff zos=0.
» xos =0 is the complementarity condition.
» z0s = L(z)s is a bilinear map, where L(z) is a symmetric matrix.

> Properties: L(z)e =z, L(z)z~! = e, and L(z)z = z2.

v

Quadratic representation of z: P(z) = 2L?(z) — L(z?).

> (J,0) is a commutative algebra with rank r and dimension n.
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Second-order cone

Example

» The second-order cone is represented as
Lr={zeR" 20 > ||z1:n—-1]}

> enxl = [1a07~~-7O]T
o w{n—l
T1n—1 zoln—1

ET—
> ros= .

T0S1:n—1 + S0T1:n—1

> L(z):
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Scaled primal-dual problem

» The NT scaling point of  and s is defined as

w=P(s” 2 )(P(s%)x)%

» For z,s € K4, there exists a unique w >x 0 so that

v= P(w)_%a: = P(w)%s.

» The scaled primal-dual system is given by

Ady =0,
A*dy +ds =0,

where
1 1 _ 1
dy = P(w)”"2Az, ds=Pw)2As, dy=Ay, A=AP(w)2.
» The complementary gap is

1
2

(2, 5) = (P(w)Zv, P(w) " 2v) = (u,0).
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Extension of Dikin search directions

> The generalization of the Dikin ellipsoid is written as

1 1 1 1
[P(w)22" o P(w) 2Az+ P(w) 2s ' o P(w)2As|p <1,

which is equivalent to

o™ o (de +ds)||F < 1.

» The Dikin search directions are derived by solving

min trace(v o (dg + ds))
s.t.  Adg = %
[v=! o (de +ds)llr < 1.
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Proximity to the central path and feasibility

» The Dikin method keeps the iterates close to the central path.
» The measure of proximity is defined as

2
r(v?) = jmestid

mi:

where Apin(v?) and Amax(v?) are the min and max eigenvalues of v2.

» Note: x(v?) > 1, with equality iff v2 = pe.
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The primal-dual Dikin method

Input
An interior feasible feasible solution (z°,4°, s°)

Parameters
Proximity measure 7 > 1 so that x(z° 0 s%) < 7
Steplength o with default value 7_\1”

Accuracy parameter €
0

z:=x0, s:=s
Repeat
Obtain (Az, As) by solving (*)
Set z := =z + alAz
Set s := s + als

Until trace(zos) <e
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Iteration complexity of the Dikin method

Theorem

Lete>0,a=7_—\1ﬁ and T > 1 so that k(2% 0 s0) < 7.

0,50
The method terminates after at most [T log M] iterations.

It yields a feasible solution (x,s) such that k(v?) < T and trace(z o s) < e.
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Numerical results

» We compare the Dikin affine scaling method and SeDuMi solver.

v

13 second-order conic problems from Dimacs library.

v

SeDuMi was modified to implement the Dikin affine scaling method.

> Centering steps are introduced as safeguard.
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Numerical results

Numerical results

Dikin-type affine scaling SeDuMi

Instance  CPU/Iter Obj relinf Cent  CPU/Iter Obj relinf
nql30n 3.6/34 -0.94602 4.1E-08 0 0.9/15 -0.94602 1.3E-08
nql300 7.2/42 0.94603 5.2E-08 1 3.4/19 0.94603 4.0E-09
nql60n 12.7/34 -0.93505 8.2E-08 0 2.9/14 -0.93505 1.7E-08
nql60o 44.3/61 0.93513 7.6E-09 3 18.8/22 0.93516 1.7E-08
nql180n 447.7/86 -0.92772 3.0E-06 5 37/12 -0.92749 3.2E-06
nb 4.7/47 -0.05070 3.3E-09 1 1.5/20 -0.050703  4.7E-12
nb-L1 4.4/32 -13.01220  4.8E-05 0 2.1/18 -13.0122 1.0E-09
nb-L2 11.0/48 -1.62890 5.9E-05 4 3.0/16 -1.6289 1.8E-09
nb-L2-B 3.8/34 -0.10257 1.4E-12 0 1.6/16 -0.102569 2.7E-11
qssp30n 11.8/79 -6.49660 4.5E-08 12 1.3/20 -6.4966 1.5E-08
qgssp300 40.8/77 6.50280 7.0E-04 11 11.4/21 6.5182 0.0021
gssp60n 82.7/125 -6.56280 1.7E-06 30 7.7/27 -6.56269 1.2E-08
qssp60o 332.5/109 6.59330 1.2E-03 27 11.5/3 127.7891 0.0284
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Conclusion

> Generalized the primal-dual Dikin affine scaling method for SCO.

v

Established polynomial complexity of the method.

v

EJA provides a powerful tool for the analysis of the method for SCO.

v

The method is viable by the numerical results.
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Thank you for your attention
Any questions?
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Euclidean Jordan algebra (EJA)

Definition

Let J be a vector space over R™ with bilinear map (z,y) — z o y.

(J,0) is referred to as EJA if for all z,y € J
1. zoy=you,
2

2. zo(zx?2o0y) =x20(zoy) where 22 =z ou,

3. there exists an inner product so that (z oy, s) = (z,y o s).

There exists a unique element e such that xoe=cox =z for all x € J.

» EJA is commutative over the field of real numbers.

» EJA is power associative; that is PT9 = 2P o 29.
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Cone of squares

Definition
The cone of squares of (J,0) is defined as
K(T) ={z?:z €T},

2

where 2% = z o x.

» K(J) is a closed pointed convex cone with nonempty interior.

Theorem

A cone is symmetric iff it is the cone of squares of some EJA.
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Rank and characteristic polynomial
Let r be the smallest integer so that {e,x, 22, - ,x"} is linearly dependent.
> r is the degree of = denoted by deg(z) for z € J.

> The rank of J is defined as rk(J) = mea}({deg(x)}.
x

> z is regular if deg(z) = rk(J).
Suppose that z is a regular element of 7.

» The characteristic polynomial of z is given by
A —ay (@) 4 L+ (D) ar (),
where ai(z), ..., ar(x) are real numbers so that

z" —ay(@x)z" 1 4+ ..+ (=) ar(z)e = 0.
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Eigenvalues, trace and determinant

Definition
Let A1,...,Ar be the roots of the characteristic polynomial.

A1, ..., Ar are called the eigenvalues of z € J.

v

trace(z) = A1 + ... + Ar.

> det(m) = A1A2... A,

> (z,y) = trace(z o y).

> llzlle = /2 -+ 22
> ||z||2 = max; |A;|.

|
A primal-dual Dikin affine scaling method for SCO (30 of 33)




Dikin affine scaling Primal-dual Dikin affine scaling Extension to symmetric cones Numerical results

Spectral decomposition

Definition
A Jordan frame is a set of elements {g1,- - ,qr} of J so that
> @; cannot be represented by the sum of two other elements.
> g?=gq; fori=1,..,k.
> g;0q; =0 for all i # j.
> g1+t gp=e

Theorem

Let J be an EJA with rank r.

FEach x € J can be uniquely represented as

= A1q1+ -+ Argr,

where the eigenvalues are real numbers.
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Second-order cone

Example

Let x € L™.
» It can be shown that

z? — 2z0x + (23 — ||T1:0—1]|%)e = 0.
> r =2 for this EJA.
» The spectral decomposition is given by
T =Aq1 + A2q2,
where

A =20 — ||T1m—1ll, A2 =0+ [[T1:n—1],

1 1 1 1
g1 =3 |_ %tn_ y 2=735 Tiin—1
lz1:n—1ll lz1n—1ll
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Dikin affine scaling

Spectral decomposition

» In particular:

» 1z is invertible if A1,..., A, are nonzero.

> € K (K4) if A1,..., A, are nonnegative (positive).
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