
Dikin affine scaling Primal-dual Dikin affine scaling Extension to symmetric cones Numerical results

A primal-dual Dikin affine scaling method for symmetric
conic optimization

Ali Mohammad-Nezhad Tamás Terlaky

Department of Industrial and Systems Engineering
Lehigh University

July 15, 2015

A primal-dual Dikin affine scaling method for SCO (1 of 33)



Dikin affine scaling Primal-dual Dikin affine scaling Extension to symmetric cones Numerical results

Outline

Dikin affine scaling

Primal-dual Dikin affine scaling

Extension to symmetric cones

Numerical results

A primal-dual Dikin affine scaling method for SCO (2 of 33)



Dikin affine scaling Primal-dual Dikin affine scaling Extension to symmetric cones Numerical results

Outline

Dikin affine scaling

Primal-dual Dikin affine scaling

Extension to symmetric cones

Numerical results

A primal-dual Dikin affine scaling method for SCO (3 of 33)



Dikin affine scaling Primal-dual Dikin affine scaling Extension to symmetric cones Numerical results

Semidefinite optimization

I The first idea of IPMs goes back to the work of Frisch (1955).

I IPMs for nonlinear optimization by Fiacco and McCormic in 1960s.

I Affine scaling direction introduced by Dikin in 1960s.

I Karmarkar (1984) revived the interest in IPMs.

I Primal-dual affine scaling methods were proposed in 1990s.

I Monteiro, Adler, and Resende (1990).

I Jansen, Roos, and Terlaky (1996).
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Ilya I. Dikin (1936 - 2008)

A primal-dual Dikin affine scaling method for SCO (5 of 33)



Dikin affine scaling Primal-dual Dikin affine scaling Extension to symmetric cones Numerical results

Primal affine scaling method
I Originally a primal method for linear optimization (LO).

I At each step minimizes the objective over an ellipsoid.

I The idea is to replace the nonnegativity constraint x ≥ 0 by

(x− x̄)T diag(x̄)−2(x− x̄) ≤ 1,

where x̄ denotes an interior feasible solution.

I Dikin proved that under nondegeneracy assumption, this method converges.
I The polynomial complexity of the method has still not been proved.
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Illustration of the primal-dual Dikin method

I Jansen, Roos and Terlaky (1996); A primal-dual Dikin affine scaling method.

I The method has a worst-case iteration complexity O(nL).
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Primal-dual Dikin affine scaling method

I At each step, the search directions (∆x,∆s) are derived by solving

min xT∆s+ sT∆x
s.t. A∆x = 0,

AT∆y + ∆s = 0,
‖x−1∆x+ s−1∆s‖ ≤ 1,

where x−1∆x and s−1∆s are coordinate-wise products.

Let v =
√
xs, d =

√
x
s

, dx = d−1∆x, ds = d∆s, and dy = ∆y.

I The scaled subproblem in the v-space is represented by

min vT (dx + ds)
s.t. Ādx = 0,

ĀT dy + ds = 0,
‖v−1(dx + ds)‖ ≤ 1,

where Ā = ADiag(d).
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Extension to semidefinite optimization (SDO)

I De Klerk, Roos, and Terlaky (1998) generalized the method to SDO.

I The search directions (DX , DS) are derived by solving

min trace(V (DX +DS))
s.t. trace(ĀiDX) = 0, i = 1, . . . ,m

m∑
i=1

Āi(dy)i +DS = 0,

‖V −
1
2 (DX +DS)V −

1
2 ‖ ≤ 1,

where V is the NT scaling matrix.

DX and DS are defined in a similar way as in LO.
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Extension to symmetric conic optimization (SCO)

I Goal: To extend the primal-dual Dikin method to SCO.

I Symmetric cone generalizes Rn+, Ln, and Sn+.

I Euclidean Jordan Algebra (EJA) is a major tool for the analysis of SCO.

I EJA provides a unified framework for IPMs over all symmetric cones.
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Symmetric cone

Let J be a vector space over the field of real numbers;

K ⊂ J be a closed pointed convex cone;

K+ be the interior of K.

〈x, s〉 is the inner product of x, s ∈ J .

The dual cone of K is

K∗ = {s : 〈x, s〉 ≥ 0, for all x ∈ K},

I K is self-dual if K = K∗.

I K is referred to as a homogeneous cone if:

an invertible map A exists so that A(x) = s and A(K) = K for all x, s ∈ K+.

I K is symmetric if it is both self-dual and homogeneous.

I Special cases: Rn+, Ln, and Sn+
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Standard form of SCO

(P ) min{〈c, x〉 : Ax = b, x ∈ K},

(D) max{bT y : A∗y + s = c, s ∈ K, y ∈ Rm}.

I K is a symmetric cone.

I b ∈ Rm, and c, ai ∈ J for i = 1, ...,m.

I Ax =


〈a1, x〉
.
.
.

〈am, x〉

; A is assumed to be full row rank.

I Interior point condition holds.
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Optimality conditions and Jordan product

Optimality conditions

I Primal and dual feasibility: Ax = b, A∗y + s = c, x, s ∈ K

I Optimality: bT y = 〈c, x〉 ⇐⇒ 〈x, s〉 = 0.

Jordan product

I Optimal iff x ◦ s = 0.

I x ◦ s = 0 is the complementarity condition.

I x ◦ s = L(x)s is a bilinear map, where L(x) is a symmetric matrix.

I Properties: L(x)e = x, L(x)x−1 = e, and L(x)x = x2.

I Quadratic representation of x: P (x) = 2L2(x)− L(x2).

I (J , ◦) is a commutative algebra with rank r and dimension n.
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Second-order cone

Example

I The second-order cone is represented as

Ln = {x ∈ Rn : x0 ≥ ‖x1:n−1‖}.

I en×1 = [1, 0, ..., 0]T

I L(x) :=

[
x0 xT1:n−1

x1:n−1 x0In−1

]
.

I x ◦ s =

[
xT s

x0s1:n−1 + s0x1:n−1

]
.
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Scaled primal-dual problem

I The NT scaling point of x and s is defined as

w = P (s−
1
2 )(P (s

1
2 )x)

1
2 .

I For x, s ∈ K+, there exists a unique w �K 0 so that

v = P (w)−
1
2 x = P (w)

1
2 s.

I The scaled primal-dual system is given by

Ādx = 0,

Ā∗dy + ds = 0,

where

dx = P (w)−
1
2 ∆x, ds = P (w)

1
2 ∆s, dy = ∆y, Ā = AP (w)

1
2 .

I The complementary gap is

〈x, s〉 = 〈P (w)
1
2 v, P (w)−

1
2 v〉 = 〈v, v〉.
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Extension of Dikin search directions

I The generalization of the Dikin ellipsoid is written as

‖P (w)
1
2 x−1 ◦ P (w)−

1
2 ∆x+ P (w)−

1
2 s−1 ◦ P (w)

1
2 ∆s‖F ≤ 1,

which is equivalent to

‖v−1 ◦ (dx + ds)‖F ≤ 1.

I The Dikin search directions are derived by solving

min trace(v ◦ (dx + ds))
s.t. Ādx = 0,

Ā∗dy + ds = 0,
‖v−1 ◦ (dx + ds)‖F ≤ 1.

(*)
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Proximity to the central path and feasibility

I The Dikin method keeps the iterates close to the central path.

I The measure of proximity is defined as

κ(v2) =
λmax(v

2)

λmin(v
2)
,

where λmin(v2) and λmax(v2) are the min and max eigenvalues of v2.

I Note: κ(v2) ≥ 1, with equality iff v2 = µe.
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The primal-dual Dikin method

Input
An interior feasible feasible solution (x0, y0, s0)

Parameters
Proximity measure τ > 1 so that κ(x0 ◦ s0) ≤ τ
Steplength α with default value 1

τ
√
r

Accuracy parameter ε

x := x0, s := s0

Repeat

Obtain (∆x,∆s) by solving (*)
Set x := x+ α∆x
Set s := s+ α∆s

Until trace(x ◦ s) ≤ ε
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Iteration complexity of the Dikin method

Theorem

Let ε > 0, α = 1
τ
√
r

and τ > 1 so that κ(x0 ◦ s0) ≤ τ .

The method terminates after at most dτr log
trace(x0◦s0)

ε
e iterations.

It yields a feasible solution (x, s) such that κ(v2) ≤ τ and trace(x ◦ s) ≤ ε.
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Numerical results

I We compare the Dikin affine scaling method and SeDuMi solver.

I 13 second-order conic problems from Dimacs library.

I SeDuMi was modified to implement the Dikin affine scaling method.

I Centering steps are introduced as safeguard.
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Numerical results

Dikin-type affine scaling SeDuMi
Instance CPU/Iter Obj relinf Cent CPU/Iter Obj relinf
nql30n 3.6/34 -0.94602 4.1E-08 0 0.9/15 -0.94602 1.3E-08
nql30o 7.2/42 0.94603 5.2E-08 1 3.4/19 0.94603 4.0E-09
nql60n 12.7/34 -0.93505 8.2E-08 0 2.9/14 -0.93505 1.7E-08
nql60o 44.3/61 0.93513 7.6E-09 3 18.8/22 0.93516 1.7E-08
nql180n 447.7/86 -0.92772 3.0E-06 5 37/12 -0.92749 3.2E-06

nb 4.7/47 -0.05070 3.3E-09 1 1.5/20 -0.050703 4.7E-12
nb-L1 4.4/32 -13.01220 4.8E-05 0 2.1/18 -13.0122 1.0E-09
nb-L2 11.0/48 -1.62890 5.9E-05 4 3.0/16 -1.6289 1.8E-09

nb-L2-B 3.8/34 -0.10257 1.4E-12 0 1.6/16 -0.102569 2.7E-11
qssp30n 11.8/79 -6.49660 4.5E-08 12 1.3/20 -6.4966 1.5E-08
qssp30o 40.8/77 6.50280 7.0E-04 11 11.4/21 6.5182 0.0021
qssp60n 82.7/125 -6.56280 1.7E-06 30 7.7/27 -6.56269 1.2E-08
qssp60o 332.5/109 6.59330 1.2E-03 27 11.5/3 127.7891 0.0284
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Conclusion

I Generalized the primal-dual Dikin affine scaling method for SCO.

I Established polynomial complexity of the method.

I EJA provides a powerful tool for the analysis of the method for SCO.

I The method is viable by the numerical results.
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Thank you for your attention

Any questions?

A primal-dual Dikin affine scaling method for SCO (26 of 33)



Dikin affine scaling Primal-dual Dikin affine scaling Extension to symmetric cones Numerical results

Euclidean Jordan algebra (EJA)

Definition

Let J be a vector space over Rn with bilinear map (x, y)→ x ◦ y.

(J , ◦) is referred to as EJA if for all x, y ∈ J
1. x ◦ y = y ◦ x,

2. x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) where x2 = x ◦ x,

3. there exists an inner product so that 〈x ◦ y, s〉 = 〈x, y ◦ s〉.

There exists a unique element e such that x ◦ e = e ◦ x = x for all x ∈ J .

I EJA is commutative over the field of real numbers.

I EJA is power associative; that is xp+q = xp ◦ xq .
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Cone of squares

Definition

The cone of squares of (J , ◦) is defined as

K(J ) = {x2 : x ∈ J},

where x2 = x ◦ x.

I K(J ) is a closed pointed convex cone with nonempty interior.

Theorem

A cone is symmetric iff it is the cone of squares of some EJA.
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Rank and characteristic polynomial

Let r be the smallest integer so that {e, x, x2, · · · , xr} is linearly dependent.

I r is the degree of x denoted by deg(x) for x ∈ J .

I The rank of J is defined as rk(J ) = max
x∈J
{deg(x)}.

I x is regular if deg(x) = rk(J ).

Suppose that x is a regular element of J .

I The characteristic polynomial of x is given by

λr − a1(x)λr−1 + ...+ (−1)rar(x),

where a1(x), ..., ar(x) are real numbers so that

xr − a1(x)xr−1 + ...+ (−1)rar(x)e = 0.
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Eigenvalues, trace and determinant

Definition

Let λ1, . . . , λr be the roots of the characteristic polynomial.

λ1, . . . , λr are called the eigenvalues of x ∈ J .

I trace(x) = λ1 + ...+ λr.

I det(x) = λ1λ2...λr.

I 〈x, y〉 = trace(x ◦ y).

I ‖x‖F =
√
λ21 + · · ·+ λ2r.

I ‖x‖2 = maxi |λi|.
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Spectral decomposition

Definition

A Jordan frame is a set of elements {q1, · · · , qk} of J so that

I qi cannot be represented by the sum of two other elements.

I q2i = qi for i = 1, ..., k.

I qi ◦ qj = 0 for all i 6= j.

I q1 + · · ·+ qk = e.

Theorem

Let J be an EJA with rank r.

Each x ∈ J can be uniquely represented as

x = λ1q1 + · · ·+ λrqr,

where the eigenvalues are real numbers.
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Second-order cone

Example

Let x ∈ Ln.

I It can be shown that

x2 − 2x0x+ (x20 − ‖x1:n−1‖2)e = 0.

I r = 2 for this EJA.

I The spectral decomposition is given by

x = λ1q1 + λ2q2,

where

λ1 = x0 − ‖x1:n−1‖, λ2 = x0 + ‖x1:n−1‖,

q1 = 1
2

(
1

− x1:n−1

‖x1:n−1‖

)
, q2 = 1

2

(
1

x1:n−1

‖x1:n−1‖

)
.
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Spectral decomposition

I In particular:

x
1
2 = λ

1
2
1 q1 + · · ·+ λ

1
2
k qr,

x−1 = λ−1
1 q1 + · · ·+ λ−1

k qr.

I x is invertible if λ1, . . . , λr are nonzero.

I x ∈ K (K+) if λ1, . . . , λr are nonnegative (positive).
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