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Standard form of semidefinite optimization (SDO)
Let C, Ai for i = 1, . . . ,m, and X: n× n symmetric matrices

(P) min
{
〈C,X〉 | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

(D) max

{
bT y

∣∣∣ m∑
i=1

yiA
i + S = C, S � 0, y ∈ Rm

}
.

Assumption

I There exists a primal-dual feasible (X, y, S) so that X,S � 0.

I Ai for i = 1, . . . ,m are linearly independent.

I We have strong duality:

〈Ai, X〉 = bi, i = 1, . . . ,m,

m∑
i=1

Aiyi + S = C,

XS = 0, X, S � 0.
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Strict and maximal complementarity
Let P∗ and D∗ denote the primal and dual optimal sets.

Definition

A primal-dual optimal solution (X∗, y∗, S∗) is maximally complementary if

(X∗, y∗, S∗) ∈ ri(P∗ ×D∗).

A maximally complementary optimal solution is strictly complementary if

X∗ + S∗ � 0.

Alternatively,

I X∗ ∈ P∗ and S∗ ∈ D∗ are maximally complementary optimal solutions if

R(X) ⊂ R(X∗), ∀X ∈ P∗, R(S) ⊂ R(S∗), ∀S ∈ D∗.

I X∗ ∈ P∗ and S∗ ∈ D∗ are strictly complementary optimal solutions if

R(X∗) +R(S∗) = Rn.

I A SDO problem may fail strict complementarity.
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Optimal partition

Let (X∗, y∗, S∗) be a maximally complementary optimal solution, and

B := R(X∗), N := R(S∗).

Then it is immediate that

I R(X) ⊆ B and R(S) ⊆ N for all (X, y, S) ∈ P∗ ×D∗.

I dim(B) + dim(N ) ≤ n.

I B and N are spanned by the eigenvectors of positive eigenvalues

B = R(QΛ(X∗)), N = R(QΛ(S∗)).

If dim(B) + dim(N ) < n:

I The orthogonal complement to B +N , which we call T , is nonzero.

I The strict complementarity fails.

Definition

The partition (B, N ,T ) of Rn is called the optimal partition of an SDO problem.
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Optimal partition and optimal solutions

Let Q := [QB, QT , QN ] denote an orthonormal bases for B, N , and T .

Let nB := dim(B), nN := dim(N ), and nT := dim(T ).

Theorem (de Klerk et al.)

Every primal-dual optimal solution (X, y, S) ∈ P∗ ×D∗ can be represented as

X = QBUXQ
T
B , S = QNUSQ

T
N ,

where UX ∈ SnB+ and US ∈ SnN+ .

I If nB > 0 and X∗ ∈ ri(P∗), then there exists UX∗ � 0.

I If nN > 0 and S∗ ∈ ri(D∗), then there exists US∗ � 0.

It can be deducted that

I QBS
nB
+ QTB is the minimal face of Sn+ which contains P∗.

I QN SnN+ QTN is the minimal face of Sn+ which contains D∗.
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Optimal partition and parametric SDO

Consider a pair of SDO problems with perturbed objective vector:

(P(ω)) min
{
〈C + ωC̄,X〉 | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

(D(ω)) max

{
bT y

∣∣∣ m∑
i=1

yiA
i + S = C + ωC̄, S � 0, y ∈ Rm

}
.

I We assume that the Slater condition holds for all ω in a closed interval.

The optimal value function is defined as

φ(ω) := 〈C + ωC̄,X(ω)〉 = bT y(ω),

where (X(ω), y(ω), S(ω)) is a primal-dual optimal solution.

I The optimal value function is concave and piecewise algebraic (Nie et al.).

I Linearity and nonlinearity intervals are joined at the transition points.
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Optimal partition and parametric SDO

We can describe φ(.) using the optimal partition:

I Differentiability of φ(.) at a given point ω:

I Left and right derivatives.

I Constancy interval of the optimal partition ⇒ linearity interval.

I Length of linearity interval.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

(.
)

Nonlinearity interval Nonlinearity interval
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Optimal partitioning in SDO (10 of 26)



Semidefinite optimization Optimal partition Identification of the optimal partition Rounding procedure

Optimal partition and parametric SDO

Identification of strongly unique optimal solutions ⇒ Linearity intervals:

〈C,X∗〉 ≥ 〈C, X̄〉+ α‖X∗ − X̄‖, ∀X̄ ∈ P∗,

or optimal solutions which are strongly unique in lower dimensions.
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Central path

We aim to identify the sets of eigenvectors converging to an orthonormal bases.

I The central path equations are defined as

〈Ai, X〉 = bi, i = 1, ...,m,

m∑
i=1

Aiyi + S = C,

XS = µI,

X, S � 0.

I This system has a unique solution, the so called µ-center, ∀µ > 0.

I The trajectory of the µ-centers is known as the central path.

I As µ→ 0, the trajectory converges to a solution in the optimal set.
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Condition number

We measure the magnitude of the eigenvalues using a condition number.

I The condition number σ is defined as

σB :=

{
maxX∈P∗ λmin(QTBXQB), B 6= {0},
∞, B = {0},

σN :=

{
max(y,S)∈D∗ λmin(QTNSQN ), N 6= {0},
∞, N = {0},

σ := min{σB, σN }.

I By the Slater condition σ is well-defined and positive.

I For some instances σ can be doubly exponentially small.
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Lower bound for the condition number

Lemma

Let L denote the binary length of the largest absolute value of the entries in b, C,
and Ai for i = 1, . . . ,m. Then we have

σ ≥ min

{
1

rP∗
∑m
i=1 ‖Ai‖

,
1

rD∗

}
,

where

I RP∗ is the radius of the ball which intersects P∗,

I RD∗ is the radius of the ball which intersects D∗.

Optimal partitioning in SDO (15 of 26)



Semidefinite optimization Optimal partition Identification of the optimal partition Rounding procedure

Regular system and degree of singularity

I The primal and dual feasible sets are regular systems:{
X ∈ Sn | 〈Ai, X〉 = bi, i = 1, . . . ,m

}
∩ int(Sn+) 6= ∅,{

S ∈ Sn |
m∑
i=1

yiA
i + S = C, for some y ∈ Rm

}
∩ int(Sn+) 6= ∅.

I The optimal set is not regular due to the complementarity condition:

I Primal optimal face: QBS
nB
+ QTB

I Dual optimal face: QN SnN+ QTN

I The number of regularization steps (Borwein and Wolkowicz) is called the
degree of singularity.
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Distance to the optimal set
To identify eigenvectors converging to an orthonormal basis of T we need

I The distance of a central solution to the optimal set,

I The degree of singularity of the subspace which contains the optimal set.

Lemma

Assume nµ ≤ 1. There exists (X, y, S) ∈ P∗ ×D∗ so that∥∥X(µ)−X
∥∥ ≤ κ(nµ)γ ,

∥∥S(µ)− S
∥∥ ≤ κ(nµ)γ ,

where

I γ = 2−d(lin(P
∗×D∗), Sn+),

I d(lin(P∗ ×D∗), Sn+) is the degree of singularity of the minimal subspace
containing the optimal set,

I κ is a positive condition number.

I In general, we have γ ≥ 1
2n−1 for n ≥ 2.

I If the strict complementarity holds, then γ = 1
2

.
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Bounds for the eigenvalues

Theorem

For a central solution (X(µ), y(µ), S(µ)) with nµ ≤ 1 it holds that:

1. For i = 1, . . . , nB we have

λ[n−i+1](S(µ)) ≤
nµ

σ
, λ[i](X(µ)) ≥

σ

n
.

2. For i = 1, . . . , nN we have

λ[i](S(µ)) ≥
σ

n
, λ[n−i+1](X(µ)) ≤

nµ

σ
.

Furthermore, we have

λ[n−i+1](X(µ)) ≤ κ
√
n(nµ)γ , λ[i](S(µ)) ≥

µ

κ
√
n(nµ)γ

, i = 1, . . . , nN + nT ,

λ[n−i+1](S(µ)) ≤ κ
√
n(nµ)γ , λ[i](X(µ)) ≥

µ

κ
√
n(nµ)γ

, i = 1, . . . , nB + nT .

I If nT > 0, then we have κ ≥ 1
n

, and 1
2n−1 ≤ γ ≤ 1

2
.
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Identification of eigenvectors converging to B, N , and T
In general, there exist three sets of eigenvectors qi(µ) for which

I λi(X(µ)) converges to a positive value and λi(S(µ)) converges to 0;

I λi(S(µ)) converges to a positive value and λi(X(µ)) converges to 0;

I both λi(X(µ)) and λi(S(µ)) converge to 0,

where λi(X(µ)) and λi(S(µ)) correspond to the eigenvector qi(µ).

I As µ→ 0, the eigenvectors converge to an orthonormal bases for B, N , and T .

Theorem

If µ satisfies

µ < min

{
1

n

(
σ

κn
3
2

) 1
γ

,
σ2

n2
,

1

n

}
,

then we can identify the sets of eigenvectors converging to an orthonormal bases
for B, N , and T .
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Approximate maximally complementary solution
I We do not have the exact orthonormal bases for B, N and T :

I An exact solution cannot be obtained from a given central solution.

I If we project (X(µ), y(µ), S(µ)) onto the boundary of the cone:

I The solution has zero complementary gap.

I The solution is ε-infeasible.

I The solution is called approximate maximally complementary.

The eigenvectors of X(µ) and S(µ) can be rearranged so that

Q(µ) := [QB(µ), QT (µ), QN (µ)],

if µ allows for the identification of eigenvectors.

Q(µ)TX(µ)Q(µ) =

ΛB(X(µ)) 0 0
0 ΛT (X(µ)) 0
0 0 ΛN (X(µ))

 .
I ΛT (X(µ))→ 0 and ΛN (X(µ))→ 0 as µ→ 0.

I We get a complementary solution if we discard ΛT (X(µ)) and ΛN (X(µ)).
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Primal auxiliary problem

Let Āi := Q(µ)TAiQ(µ).

I For the primal problem we solve

min ‖εp‖2 + ‖∆X‖2

s.t. 〈ĀiB,∆X〉 − (εp)i = 〈ĀiT ,ΛT (X(µ))〉+ 〈ĀiN ,ΛN (X(µ))〉, i = 1, . . . ,m.

I The optimal solution (ε∗p,∆X
∗) to the auxiliary problem yields

X̃B := ΛB(X(µ)) + ∆X∗

so that

〈ĀiB, X̃B〉 = bi + (ε∗p)i, i = 1, . . . ,m.

I Thus, X̃B has ‖ε∗p‖ infeasibility for the primal constraints.
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Dual auxiliary problem

Let E denote a residual matrix as

E :=

 EB EBT EBN
ET B ET ET N
ENB ENT 0

 .
For the dual problem we solve

min ‖E‖2 + ‖∆y‖2 + ‖∆S‖2

s.t.
m∑
i=1

∆yiĀ
i +

0 0 0
0 0 0
0 0 ∆S

− E =

ΛB(S(µ)) 0 0
0 ΛT (S(µ)) 0
0 0 0

 .
I The optimal solution (E∗,∆y∗,∆S∗) gives

ỹi := yi(µ) + ∆y∗i , i = 1, . . . ,m,

S̃N := ΛN (S(µ)) + ∆S∗.
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Cone feasibility

Let πp and πd denote parameters dependent on linear mapping A and Q(µ), and

r(n) :=
n(n+ 1)

2
.

I If µ is sufficiently small, then the rounded solution is cone feasible.

Theorem

Let ϑ1 := 2n2‖A‖2, ϑ2 := 2κn
√
nnT ‖A‖2, and let

µ̃ := min

{
σ2

ϑ1 max{πp
√
r(nB)nN , πd

√
mnB}

,
1

n

(
σ

ϑ2 max{πp
√
r(nB), πd

√
m}

) 1
γ
}
.

If µ ≤ µ̃, then we have X̃B, S̃N � 0.

I Only O(max{n6
B,m

3}) arithmetic operations are needed.
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Summary

I Introduction of the optimal partition.

I Application of optimal partition in sensitivity analysis.

I Identification of eigenvectors converging to an orthonormal bases.

I A rounding procedure for an approximate maximally complementary solution.
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Thank you for your attention

Any questions?
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