LEHIGH

COR@L踠 ISE

1.SUMMARY

- The notion of the optimal partition for second-order conic optimization
- Iteration complexity of the identification of the optimal partition.
- The quadratic convergence of the Newton's method to identify a maximally complementary optimal solution.

Problem Description

Second-order conic optimization (SOCO) problem is defined as
(P) $\min \left\{c^{T} x: A x=b, x \in \mathcal{L}_{+}^{\bar{n}}\right\}$,
(D) $\max \left\{b^{T} y: A^{T} y+s=c, s \in \mathcal{L}_{+}^{\bar{n}}\right\}$,
where $\bar{n}=\sum_{i=1}^{p} n_{i}, c \in \mathbb{R}^{\bar{n}}, A \in \mathbb{R}^{m \times \bar{n}}$, and

$$
\begin{aligned}
\mathcal{L}_{+}^{\bar{n}} & :=\mathbb{L}_{+}^{n_{1}} \times \mathbb{L}_{+}^{n_{2}} \times \cdots \times \mathbb{L}_{+}^{n_{p}} \\
\mathbb{L}_{+}^{n_{i}} & :=\left\{x^{i}=\left[x_{1}^{i}, x_{2}^{i}, \ldots, x_{n_{i}}^{i}\right]^{T} \in \mathbb{R}^{n_{i}}: x_{1}^{i} \geq\left\|x_{2: n_{i}}^{i}\right\|\right\}
\end{aligned}
$$

Assumption 1. A has full row rank.
Assumption 2. Slater condition: \exists feasible $(x, y, s) \mid x, s \in \operatorname{int}\left(\mathcal{L}_{+}^{\bar{n}}\right)$. As a result, strong duality holds between (P) and (D).

3. Complementarity

The complementarity condition is written as $x \circ s=0$, where

$$
x^{i} \circ s^{i}:=\binom{\left(x^{i}\right)^{T} s^{i}}{x_{1}^{i} s_{2: n_{i}}^{i}+s_{1}^{i} x_{2: n_{i}}^{i}}, \quad i=1, \ldots, p
$$

Let \mathcal{P}^{*} and \mathcal{D}^{*} denote the primal and dual optimal sets, respectively.

- $\left(x^{*}, y^{*}, s^{*}\right) \in \mathcal{P}^{*} \times \mathcal{D}^{*}$ is maximally complementary if it has maximal number of second-order cones i for which

$$
\left(x^{i}\right)^{*}+\left(s^{i}\right)^{*} \in \operatorname{int}\left(\mathbb{L}_{+}^{n_{i}}\right) .
$$

- $\left(x^{*}, y^{*}, s^{*}\right) \in \mathcal{P}^{*} \times \mathcal{D}^{*}$ is called strictly complementary if $x^{*}+s^{*} \in \operatorname{int}\left(\mathcal{L}_{+}^{\bar{n}}\right)$.

. Central path equations

$$
\begin{aligned}
A x & =b, \quad x \in \operatorname{int}\left(\mathcal{L}_{+}^{\bar{n}}\right), \\
A^{T} y+s & =c, \quad s \in \operatorname{int}\left(\mathcal{L}_{+}^{\bar{n}}\right) \\
x \circ s & =\mu e
\end{aligned}
$$

- A unique solution $(x(\mu), y(\mu), s(\mu))$ so called a central solution $\forall \mu>0$.
- As $\mu \rightarrow 0$, the trajectory converges to a maximally complementary optimal solution.

OPTIMAL PARTITION

In SOCO, the index set $\{1, \cdots, p\}$ of the second-order cones is partitioned into four sets $\mathcal{B}, \mathcal{N}, \mathcal{R}$, and $\mathcal{T}=\left\{\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}\right\}$ as follows.
$\mathcal{B}:=\left\{i \mid x_{1}^{i}>\left\|x_{2: n_{i}}^{i}\right\|\right.$, for some $\left.x \in \mathcal{P}^{*}\right\}$,
$\mathcal{N}:=\left\{i \mid s_{1}^{i}>\left\|s_{2: n_{i}}^{i}\right\|\right.$, for some $\left.s \in \mathcal{D}^{*}\right\}$,
$\mathcal{R}:=\left\{i \mid x_{1}^{i}=\left\|x_{2: n_{i}}^{i}\right\|>0, s_{1}^{i}=\left\|s_{2: n_{i}}^{i}\right\|>0\right.$ for some $\left.(x, y, s) \in \mathcal{P}^{*} \times \mathcal{D}^{*}\right\}$
$\mathcal{T}_{1}:=\left\{i \mid x^{i}=s^{i}=0\right.$, for some $\left.(x, y, s) \in \mathcal{P}^{*} \times \mathcal{D}^{*}\right\}$,
$\mathcal{T}_{2}:=\left\{i \mid s^{i}=0, \quad x_{1}^{i}=\left\|x_{2: n_{i}}^{i}\right\|>0\right.$, for some $\left.(x, y, s) \in \mathcal{P}^{*} \times \mathcal{D}^{*}\right\}$,
$\mathcal{T}_{3}:=\left\{i \mid x^{i}=0, \quad s_{1}^{i}=\left\|s_{2: n_{i}}^{i}\right\|>0\right.$, for some $\left.(x, y, s) \in \mathcal{P}^{*} \times \mathcal{D}^{*}\right\}$.

- $(\mathcal{B}, \mathcal{N}, \mathcal{R}, \mathcal{T})$ is called the optimal partition of SOCO.

6. Example

- For this problem $\mathcal{R}, \mathcal{T}_{2} \neq \emptyset$.
- The unique optimal solution is not strictly complementary

7. Identification of $\mathcal{B}, \mathcal{N}, \mathcal{R}$, and \mathcal{T}

$$
\begin{aligned}
\sigma_{\mathcal{B}} & :=\min _{i \in \mathcal{B}} \max _{x \in \mathcal{P}^{*}}\left\{x_{1}^{i}-\left\|x_{2: n_{i}}^{i}\right\|\right\}, \quad \sigma_{\mathcal{N}}:=\min _{i \in \mathcal{N}} \max _{(y, s) \in \mathcal{D}^{*}}\left\{s_{1}^{i}-\left\|s_{2: n_{i}}^{i}\right\|\right\} \\
\sigma_{1} & :=\min \left\{\sigma_{\mathcal{B}}, \sigma_{\mathcal{N}}\right\} \\
\sigma_{2} & :=\min _{i \in \mathcal{R}} \max _{(x, y, s) \in \mathcal{P}^{*} \times \mathcal{D}^{*}}\left\{x_{1}^{i}+s_{1}^{i}-\left\|x_{2: n_{i}}^{i}+s_{2: n_{i}}^{i}\right\|\right\}, \\
\sigma_{3} & :=\max _{(x, y, s) \in \mathcal{P}^{*} \times \mathcal{D}^{*}}\{\|(x, y, s)\|\} .
\end{aligned}
$$

Theorem 1. We can identify $\mathcal{B}, \mathcal{N}, \mathcal{R}$ and \mathcal{T} from a given central solution $(x(\mu), y(\mu), s(\mu))$ if

$$
\mu<\min \left\{\frac{\sigma_{1}^{2}}{2 p^{2}}, \frac{\sigma_{1} \sigma_{2}}{4 p^{2}}, \frac{1}{p}\left(\frac{1}{3 \kappa} \min \left\{\frac{\sigma_{1}}{2 p}, \frac{\sigma_{2}}{2 p}\right\}\right)^{\frac{1}{\gamma}}\right\}
$$

where $\kappa>0$ is a constant, $\gamma=2^{-d_{s}}$ and d_{s} is the degree of singularity

8. PRIMAL AND DUAL NONDEGENERACY

Let $T_{\mathcal{L}_{+}^{\bar{n}}}^{s}(x)\left(T_{\mathcal{L}_{+}^{\bar{n}}}^{s}(s)\right)$ be the tangent space to $\mathcal{L}_{+}^{\bar{n}}$ at $x(s)$.

- A primal feasible solution x is called nondegenerate if

$$
T_{\mathcal{L}_{+}^{\bar{n}}}^{s}(x)+\operatorname{Ker}(A)=\mathbb{R}^{\bar{n}}
$$

- A dual feasible solution (y, s) is called nondegenerate if

$$
T_{\mathcal{L}_{+}^{\bar{n}}}^{s}(s)+\operatorname{Span}\left(A^{T}\right)=\mathbb{R}^{\bar{n}} .
$$

9. SECOND-ORDER SUFFICIENCY CONDITION

The second-order sufficiency condition for (D) is written as

$$
\begin{equation*}
\sup _{x \in \mathcal{P} *} \sum_{i=1}^{p} h^{T} \mathcal{H}^{i}(y, x) h>0, \quad \forall h \in C(y) \backslash\{0\} \tag{1}
\end{equation*}
$$

where $C(y)$ denotes the cone of critical directions, and

$$
\mathcal{H}^{i}(y, x)= \begin{cases}-\frac{x_{1}^{1}}{s_{1}^{i}} A_{i} R_{i} A_{i}^{T}, & s^{i} \in \operatorname{bd}\left(\mathbb{L}_{+}^{n_{i}}\right) \backslash\{0\} \\ \mathbf{0}_{m \times m}, & \text { otherwise }\end{cases}
$$

Lemma 1. Assume that the primal nondegeneracy condition holds. Then (1) holds at the unique solution $\left(y^{*}, s^{*}\right) \in \operatorname{rint}\left(\mathcal{D}^{*}\right)$.

10. NonLINEAR REFORMULATION OF (D)

Using the optimal partition we can obtain $\left(y^{*}, s^{*}\right) \in \operatorname{rint}\left(\mathcal{D}^{*}\right)$ by

$$
\begin{array}{lll}
\min & -b^{T} w & \\
\text { s.t. } & A_{i}^{T} w & =c_{i}, \quad i \in \mathcal{B} \cup \mathcal{T}_{1} \cup \mathcal{T}_{2}, \\
& A_{i}^{T} w+z^{i} & =c_{i}, \quad i \in \mathcal{R} \cup \mathcal{T}_{3}, \\
& \left(z^{i}\right)^{T} R_{i} z^{i} & =0, \quad i \in \mathcal{R} \cup \mathcal{T}_{3}, \\
& (w, z) & \in \mathcal{W},
\end{array}
$$

where $w \in \mathbb{R}^{m}, z^{i} \in \mathbb{R}^{n_{i}}$ for $i \in \mathcal{R} \cup \mathcal{T}_{3}$, and \mathcal{W} is defined as $\mathcal{W}:=\left\{(w, z) \mid z_{1}^{i}>0, i \in \mathcal{R} \cup \mathcal{T}_{3}, \quad c_{i}-A_{i}^{T} w \in \operatorname{int}\left(\mathbb{L}_{+}^{n_{i}}\right), i \in \mathcal{N}\right\}$. Lemma 2. By the dual nondegeneracy condition, the set of Lagrange multipliers associated with the optimal solution of (2) is a singleton.

11. LOCAL CONVERGENCE

Let β be an upper bound for the Jacobian of the system of optimality conditions at the unique optimal solution of (2), and define

$$
::=\frac{1}{4 \beta \sqrt{\max \left\{\max _{i \in \mathcal{R} \cup \mathcal{T}_{3}}\left\{n_{i}\right\}, 2\right\}}}
$$

Theorem 2. Assume that the primal-dual nondegeneracy conditions hold. Then, starting from $(x(\mu), y(\mu), s(\mu))$, where

$$
\mu \leq\left(\frac{\varepsilon^{2}}{\kappa^{2} p^{2 \gamma}\left(1+\frac{1}{4}\left(\frac{4 p \sqrt{|\mathcal{}|}}{\sigma_{2}}\left(1+\frac{2 \sigma_{3}}{\sigma_{2}}\right)\right)^{2}\right)}\right)^{\frac{1}{2 \gamma}}
$$

the Newton's method applied to the KKT system of (2) converges to the unique optimal solution $\left(y^{*}, s^{*}\right)$ with quadratic rate.

